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1 Introduction

A typical approach to data analysis is to initially carry out a model selection exercise leading to a single
“best” model and to then make inference as if the selected model were the true model. However, as a
number of authors have pointed out, this paradigm ignores a major component of uncertainty, namely
uncertainty about the model itself (Raftery, 1988, Breslow, 1990, Draper et al., 1987, Hodges, 1987, Self and
Cheeseman, 1987). As a consequence uncertainty about quantities of interest can be underestimated. For
striking examples of this see York and Madigan (1992), Regal and Hook (1991) and Draper et al. (1987).

There is a standard Bayesian way around this problem. If A is the quantity of interest, such as a
structural characteristic of the system being studied, a future observation, or the utility of a course of action,
then its posterior distribution given data D is

~

pr(A [ D) = pr(A | My, D)pr(My | D). (1)
k=1
This is an average of the posterior distributions under each of the models, weighted by their posterior model
probabilities. In equation (1), My,..., Mg are the models considered, the posterior probability for model
Mj, is given by

pr(Mj | D) = —PrD [ Me)pr(Me)

= =x , (2)
> iy pr(D | My)pr(M;)

where

pr(D | My) = / pr(D | 0, My)pr(6 | My)do, (3)

6 is a vector of parameters, pr(é | My) is the prior for # under model My, pr(D | 8, M}) is the likelihood,
and pr(Mp) is the prior probability that My is the true model.

Hodges (1987) argues that “what is clear is that when the time comes for betting on what the future holds,
one’s uncertainty about that future should be fully represented and model mixing is the only tool around”.
Furthermore, averaging over all the models in this fashion provides better predictive ability, as measured by
a logarithmic scoring rule, than using any single model M; (Madigan and Raftery, 1991, hereafter referred
to as MR).

However, implementation of the above strategy is difficult. There are two primary reasons for this: firstly,
the integrals in (3) can be hard to compute, and secondly, the number of terms in (1) can be enormous.
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For graphical models for discrete data, efficient solutions to the former problem have been developed. Two
approaches to the latter problem, i.e. the enormous number of terms in (1), have recently been proposed.
MR do not attempt to approximate (1) but instead, appealing to standard norms of scientific investigation,
adopt a model selection procedure. This involves averaging over a much smaller set of models than in (1)
and delivers a parsimonious set of models to the data analyst, thereby facilitating effective communication
of model uncertainty. Madigan and York (1992) on the other hand suggest directly approximating (1) with
a Markov chain Monte Carlo method.

MR examined the predictive performance of their method. Our purpose in this paper is to examine the
predictive performance of the Markov chain Monte Carlo method and compare the predictive performance
of both approaches. This work is of direct relevance to probabilistic knowledge-based systems systems where
model uncertainty abounds (Bradshaw et al., 1992).

2 Model Selection and Occam’s Window

Two basic principles underly the approach presented in MR. Firstly, they argue that if a model predicts the
data far less well than the model which provides the best predictions, then it has effectively been discredited
and should no longer be considered. Thus models not belonging to:

, . max{pr(M; | D)}
A‘{M’“' pe(M; | D) SC}’ ®)

should be excluded from equation (1) where C' is chosen by the data analyst. Secondly, appealing to Occam’s
razor, they exclude complex models which receive less support from the data than their simpler counterparts.
More formally they also exclude from (1) models belonging to:

pr(M; | D) }
B={ M, :3M € A M C My, 2=t 20 5 5
{ k ] [ ka'(Mle) ()

and equation (1) is replaced by

ZMkE pr(A | My, D)pr(D | My)pr(My)
P D) = (D Moy ©

where

A= A\B. (7)

This greatly reduces the number of models in the sum in equation (1) and now all that is required is a
search strategy to identify the models in A. Two further principles underly the search strategy. Firstly, if
a model is rejected then all its submodels are rejected. This is justified by appealing to the independence
properties of the models. The second principle — “Occam’s Window” — concerns the interpretation of the
ratio of posterior model probabilities pr(My | D)/pr(My | D). Here My is one link “smaller” than M;.
The essential idea is that if there is evidence for My then M is rejected but to reject My we require strong
evidence for the larger model, M. If the evidence is inconclusive (falling in Occam’s Window) neither model
is rejected. MR set the edges of the window at 21—0 and 1.

These principles fully define the strategy. Typically the number of terms in (1) is reduced to fewer than

20 models and often to as few as two. MR provide a detailed description of the algorithm.

3 Markov Chain Monte Carlo Model Composition

Our second approach is to approximate (1) using Markov chain Monte Carlo methods, such as in Hastings
(1970) and Tierney (1991), generating a process which moves through model space. Specifically, let M denote
the space of models under consideration. We can construct an irreducible Markov chain {M(¢)},t =1,2,...



with state space M and equilibrium distribution pr(M; | D). Then for any function g(M;) defined on M, if
we simulate this Markov chain for t = 1,..., N, the average:

¢=+ > sl (1) (®)

converges with probability one to E(g(M)) as N goes to infinity. To compute (1) in this fashion we set
g(M) = pr(A | M, D).

To construct the Markov chain we define a neighborhood nbd(M) for each M € M which is the set of
models with either one link more or one link fewer than M and the model M itself. Define a transition
matrix ¢ by setting ¢(M — M') = 0 for all M’ & nbd(M) and ¢(M — M’) constant for all M’ € nbd(M). If
the chain is currently in state M, we proceed by drawing M’ from ¢(M — M'). If the model is decomposable

it is then accepted with probability:
. { pr(M’ | D)}
minqg 1,————~ 5.

pr(M | D)

Otherwise the chain stays in state M. It has been our experience that this process is highly mobile and runs
of 10,000 or less are typically adequate.

4 Analysis

The efficacy of a modeling strategy can be judged by how well the resulting “models” predict future obser-
vations (Self and Cheeseman, 1987). We have assessed the predictive performance of Markov chain Monte
Carlo model composition (MC?) method for the three examples considered by MR. Their results are re-
produced for comparison purposes. In each case we have started the Markov chain at a randomly chosen
model, ran the chain for 100,000 iterations discarding the first 10,000. The data sets each have between six
and eight binary variables. Performance, measured by the logarithmic scoring rule, is assessed by randomly
splitting the complete data sets into two subsets. One subset, containing 25% of the data, is used to select
models with the other subset being used as set of test cases. Repeating the random split, varying the subset
proportions, or starting the Markov chain from a different location produces very similar results.

The first example concerns data on 1,841 men cross-classified according to risk factors for Coronary
Heart Disease. This data set was previously analysed by Edwards and Havranek (1985) and others. The
risk factors are as follows: A, smoking; B, strenuous mental work; C, strenuous physical work; D, systolic
blood pressure; F, ratio of # and « proteins; F', family anamnesis of coronary heart disease.

The second example concerns a survey which was reported in Fowlkes et al. (1988) concerning the
attitudes of New Jersey high-school students towards mathematics. A total of 1190 students in eight schools
took part in the survey. The variables collected were: A, lecture attendance; B, Sex; C, School Type
(suburban or urban); D, “I'll need mathematics in my future work” (agree or disagree); E, Subject Preference
(maths/science or liberal arts); F', Future Plans (college or job);

The final example concerns the diagnosis of scrotal swellings. Data on 299 patients were presented in MR,
cross-classified according to one disease class, Hernia (H ), and 7 binary indicants as follows: A, possible to get
above the swelling; B, swelling transilluminates; C, swelling separate from testes; D, positive valsalva/stand
test; E, tender; F', pain; GG, evidence of other urinary tract infections.

Results are presented in Tables 1, 2 and 3 for each of the examples. Given in each case are the models
selected by MR and the logarithmic scoring rule summed over the test cases for each individual model. Next
the score resulting from averaging over these models is given. For the Coronary Heart Disease example, the
score is also included for the model selected by Whittaker (1990) on the basis of the full data set. This
represents the score that would result from using a typical model selection procedure. Finally the score for
MC?3 is given.

In each case, methods that average over models, provide predictive performance which is superior to
the performance resulting from basing the inference on any single model which might reasonably have been



Table 1: Coronary Heart Disease: Predictive Performance

Model Posterior Logarithmic
probability % Score
[AE|[BC||BE]|DE][F] 26 4986.7
[AC|[BC||BE]|DE][F] 16 4980.9
[AC|[AE][BC][DE][F] 13 4981.0
[A][BC|[BE][DE][F] 9 4989.4
[AE][BC|[BE]|D][F] 8 4987.4
[AE][BC|[DE][F] 7 4989.5
[AC][BC]|[BE]|D][F] 5 4981.6
[AC|[BC||DE][F] 4 4983.7
[AC|[AE][BC][D][F] 4 4981.7
[A][BC|[BE][D][F] 3 4990.1
[A][BC|[DE][F] 2 4992.2
[AE][BC]|D][F] 2 4990.2
[AC|[BC|[D][E][F]) 1 4984.4
[ABCE|[ADE][BF] Whittaker 4990.2
Model Averaging 4953.6
Markov Chain Monte Carlo Model Composition 4933.7

Table 2: Women and Mathematics: Predictive Performance

Model Posterior Logarithmic
probability % Score
[A][B][CDF][DE) 75 3318.9
[A][B][CF][DE]|[DF] 21 3317.3
[A][B][CF][DE] 4 3320.4
Model Averaging 3313.9
Markov Chain Monte Carlo Model Composition 3271.5
Table 3: Scrotal Swellings: Predictive Performance
Model Posterior Logarithmic
probability % Score
[AH|[AD]|[BDE]|[CD]EF][FG 3 605.3
[AH|[DH|[BDE]CD]EF|[FG)] 3 599.6
[AH|[DH|[BDE]CDE|EF]|[FG] 5 600.6
[AH|[AD]|[BDE][CDE]EF][FG] 5 606.3
[AH|[AD]|[BDE]|[CD]EF]|[EG] 15 603.4
[AH|[DH|[BDE][CD][EF][EG)] 15 597.7
[AH|[DH|[BDE]CDE|EF]|[EG] 27 598.7
[AH|[AD]|[BDE][CDE]EF]EG] 27 604.4
Model Averaging 594.2
Markov Chain Monte Carlo Model Composition 590.1
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Figure 1: Women and Mathematics: ROC Curves



selected. In the coronary heart disease data for example, the Occam’s window models outperform the “best”
model (i.e. that with the highest posterior probability) by 33 points of log predictive probability, or 66
points on the scale of twice the log probability on which deviances are measured. MC3 provides a further
performance improvement of 20 points (or 40 points on the deviance scale).

A ROC analysis was also carried out for each of the examples and in Figure 1 we show the ROC curves
for four of the variables in the women and mathematics data set. Here 25% of the data was used for testing.
The dashed ROC curves show how well the model with the highest posterior probability performs, the dotted
curves show the performance averaging over the models in Occam’s window, while the solid curves are for
MC3. For each of the variables, MC? provides substantially improved performance. Such clear differences do
not occur in each of the examples, although typically, methods which average over models provide superior
ROC curves.

It is clear that model averaging improves predictive performance. MC? generally provides superior
performance. However, the insight into model uncertainty provided by the Occam’s window method will be
important in many applications.
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